
All rights reserved.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.

2011-09-06

nRF24LE1 firmware update over-the-air

nAN-18

Application Note v1.0

Key words

• Firmware update over-the-air protocol
• nRF24LE1
• Dedicated protocol
• Fully functional project and graphical user interface included with this application note

nRF24LE1 firmware update over-the-air
Contents

1 Introduction ...3
2 Challenges with firmware updates ..4
3 Theory of operation...5
3.1 Data format ...5
3.2 Application protocol ..6
3.2.1 Init...6
3.2.2 Update start..9
3.2.3 Write ...11
3.2.4 Update complete ..12
3.2.5 Read...13
3.2.6 Exit ...14
3.2.7 Ping ..15
3.2.8 Error codes...15
4 Implementation..16
4.1 Project setup...16
4.2 Implementing the nRF24LE1 update firmware17
4.2.1 Relocating the nRF24LE1 update firmware17
4.2.2 Boot loader ...18
4.2.3 Erasing flash pages..18
4.2.4 Avoid using interrupts...19
4.2.5 Storing important variables...19
4.2.6 Channel switching and connection timeout20
4.2.7 Resetting RF parameters before leaving the boot loader.................21
4.2.8 Boot loader duration...21
4.3 PC host application...21
4.4 nRF24LU1+ USB-RF adapter...22
4.4.1 Establishing a connection...23
4.4.2 Forwarding commands from host to remote device23
4.4.3 Connection termination ..23
4.5 New firmware considerations..23
5 Discussion ...25
5.1 Optimizing for size ..25
5.1.1 HAL functions ...25
5.1.2 Reusing shared memory segments to reduce code redundancy25
5.2 Security...26
5.3 Overcoming challenges to RF communication26
6 References ...26
7 Glossary ...27
Revision v1.0 Page 2 of 28

nAN-18
1 Introduction
Being able to add new and better functionality to a product after it has been shipped out can extend its
lifetime, and allow for better customer support.

This application note along with the included project files will enable you to implement over-the-air
firmware updates for nRF24LE1. It contains a detailed description of the nRF24LE1 firmware and the
protocol created and used for this application note’s project. The application note also outlines the roles of
the PC host application and the nRF24LU1+ USB-RF adapter. A project compiled in KeilTM’s µVision with
all the necessary code is available with the nRFgo Software Development Kit.

Moreover the application note explains how the host application on the PC, and the nRF24LU1+ USB-RF
adapter work, and explain which roles they assume in the firmware update. The project files also contain a
PC application with a graphical user interface created in C# using Windows Forms.

In our example the firmware to be updated resides in a remote device, only connected to a host by RF.
This remote device consists of an nRF24LE1 RF System-on-Chip with flash memory. The host used in this
application note is a Windows PC connected to an nRF24LU1+ over USB.

 Figure 1. Communication from user to remote device

The remote device in Figure 1. represents the end product that you are developing. Its firmware will consist
of two parts: the update firmware that executes as the boot loader, and the application-specific firmware
that can be updated. The update firmware runs for a short period at each startup, before running the
product-specific firmware. We refer to the product-specific firmware as new firmware in this application
note, while update firmware will be referred to simply as nRF24LE1 update firmware.

A separate application note nAN-22 describes the USB communication between the PC host application
and the nRF24LU1+ USB-RF adapter, using the HID interface. nAN-22 also describes the graphical user
interface for the PC host application, created in C# using Windows forms.

USB-RF
Adapter

(nRF24LU1+)
Host
(PC)

USB
<HID>

RF
<Enhanced ShockburstTM>

Remote device
(nRF24LE1)
Revision v1.0 Page 3 of 28

nRF24LE1 firmware update over-the-air
2 Challenges with firmware updates
When firmware is stored in flash memory, you can re-program it to fix bugs or add new functionality to
existing devices. There are two options for writing to the nRF24LE1 flash memory; through the
nRF24LE1’s MCU or directly over the nRF24LE1 SPI programming bus. In several types of devices the
latter is impractical, especially in cases where the only available communication interface with the device is
over RF.

When writing firmware to flash memory using the MCU, you must not overwrite the code that executes the
update. If your update firmware crashes because of code overwrite, it is unlikely that it will be able to
execute correctly again, and you may lose the re-programmability of the device. In the worst case, this may
render your product useless.

Writing to flash memory can only be done after you first erase the location to which you want to write. On
the nRF24LE1 you erase pages of 512 bytes of flash memory, which of course means that the nRF24LE1
update firmware cannot be located on the same 512 byte page to which the new firmware is written.

Another task involves initiating the update firmware. If you assign this role to the new firmware, the update
firmware may become inaccessible if the new firmware contains errors. The update firmware could also
become inaccessible if transmission of the new firmware is aborted while its code is being written to flash
memory. You should therefore not let the new firmware initiate the nRF24LE1 update firmware.
Revision v1.0 Page 4 of 28

nAN-18
3 Theory of operation
In this chapter we will explain necessary details related to the firmware update solution; the data format,
and the protocol used to transfer it from host to remote device.

3.1 Data format
Firmware is often compiled to HEX files. While the format is often vendor specific, the HEX files generally
comply with official standards. For this solution the Intel-HEX or HEX-80 format from Keil is used.

 Table 1. Data structure for Intel HEX format

To avoid confusion about the format names, note that HEX-80 is the Intel-HEX format which is produced
by the Keil tools.

Every HEX record starts with the ‘:’ character. This is useful for parsing the HEX file, but does not provide
any important information beyond that. The Byte Count value is the number of bytes of the Data field, and
for HEX-80 records, this is not larger than 0x10 or 16 bytes.

The Memory Address specifies where in the flash memory the data should be written.

Note: The HEX-80 format does not require records to be sorted in increasing addresses, hence data
is not necessarily written in order.

The Record Type field will usually be set to 0x00, indicating that this is a normal record. The only other
option in HEX-80 is 0x01, which is the end-of-file indicator.

The Data field contains the code that should be written to the flash memory. This is the hexadecimal
representation of the binary code of the new firmware. This field is of variable length and the length is
specified by the Byte-Count field.

The Checksum field contains the least significant byte of the two’s complement of the sum of the other
fields, not counting the record mark field.

An example of this is “:0300300002337A1E”. See Table 2.

 Table 2. Example of Intel HEX format

Add Byte-Count, Memory-Address, Record-Type, and Data field together:

03 + 00 + 30 + 00 + 02 + 33 + 7A = E2

Start code ‘:’ Byte count Memory
address Record type Data Checksum

1 byte 1 byte 2 bytes 1 byte n bytes 1 byte

Start code ‘:’ Byte count Memory
address Record type Data Checksum

: 03 00 30 00 02 33 7A 1E
Revision v1.0 Page 5 of 28

nRF24LE1 firmware update over-the-air
Find the two’s complement to this sum:

Bitwise-inverse (E2) + 1 = 1E

When checking the checksum you can simply add all the fields except the Start Code, and check that this
number is equal to zero. Disregard any overflow the summation will cause.

03 + 00 + 30 + 00 + 02 + 33 + 7A + 1E = 00 (valid checksum)

3.2 Application protocol
The application protocol created for this project is used for end-to-end communication between the host
and the remote device. In the included project it is built upon HID and Enhanced Shockburst™ as seen in
Figure 2. but it can be built upon any transport protocol. An explanation of the application protocol follows
below.

Note: The arrows with dark fill show a logical communication flow. The arrows with light-colored fill
show an actual communication flow.

 Figure 2. Communication abstraction layers

In the application protocol used between the host and the remote device, the communication is always
initiated by the host. The host sends commands to the remote device, and the remote device executes the
command and replies with an acknowledgement (Ack) if successful, or a not acknowledgement (Nack) if
not.

3.2.1 Init
This command establishes the connection between the host and the remote device.

3.2.1.1 Functional description

The Init command is sent by the host to establish a connection with the remote device. It does not
contain any content. If the remote device is listening on that channel, it will reply with an Ack containing its
model number and the firmware version number of the firmware currently installed on it. When the host
receives the Ack, the connection is established. There is no Nack for the Init command.

See Figure 3. on page 7.

Host application

Application protocol

HID HID

USB-RF
Adapter firmware

Enhanced
ShockburstTM

Enhanced
ShockburstTM

Application protocol

nRF24LE1
Update firmware

Windows PC nRF24LU1+ nRF24LE1
Revision v1.0 Page 6 of 28

nAN-18
 Figure 3. nRF24LE1 update firmware state diagram

3.2.1.2 Message format

 Table 3. Data structure for Init command

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x02 Init command

Content
No content

Power off

Listening

Connnected

Receiving
firmware

Go to end-
product
firmware

receive INIT/
send ACK

PING not received
before
timeout

receive EXIT

receive PING/
send PONG

receive WRITE/send
ACK

receive READ/
send ACKreceive

UPDATE
START/send
ACK

receive READ/
send ACK

No firmware
installed

Bootloader timeout

reset
Revision v1.0 Page 7 of 28

nRF24LE1 firmware update over-the-air
3.2.1.3 Reply

 Table 4. Data structure for Ack reply

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x07 Acknowledge

Content
Product number 1 Number identifying product

Firmware version 1 Version number of installed firmware
Revision v1.0 Page 8 of 28

nAN-18
3.2.2 Update start
This command initiates the transfer of new firmware.

3.2.2.1 Functional description

The Update start command is sent when the host wants to update the firmware on the remote device.
The content contains the size of the new firmware in bytes, the reset vector of the new firmware, a
specified version number used to recognize the firmware once it is installed, and a checksum to ensure
that this command is correct. The checksum is calculated and checked in the same way as for the HEX
format (see section 3.1 on page 6), using the sum of the other fields of the content.

If the remote device is ready to receive the new firmware it will reply with an Ack, otherwise it will reply with
a Nack containing the error code identifying the error that has occurred.

 Figure 4. Host application flow chart

IDLE

Send INIT

Send
UPDATE_START

U
se

r c
an

ce
ls

co

nn
ec

t a
tte

m
pt

CONNECTED

No

Y
es

No

Receive
ACK

Receive
ACK

Send WRITE

Receive
ACK

Yes

Sent all
WRITES No

Yes

Retransmitted two
times?

Yes

No

Yes
Revision v1.0 Page 9 of 28

nAN-18
3.2.2.2 Message format

 Table 5. Data structure for Update-start command

3.2.2.3 Reply

 Table 6. Data structure for Ack reply

 Table 7. Data structure for Nack reply

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x03 Update start command

Content
Byte count total 2 Size of firmware in bytes

Reset vector opcode 1 (0x02) Opcode part of new firmware’s reset
vector

Reset vector address 2 Address part of new firmware’s reset
vector

Firmware version 1 New firmware’s version number
Checksum 1 Message checksum

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x07 Acknowledge (Ack)

Content
No content

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x08 Not acknowledge (Nack)

Content
Error code 1 Error code (see Table 18. on page 15)
Revision v1.0 Page 10 of 28

nAN-18
3.2.3 Write
The Write command contains one HEX record.

3.2.3.1 Functional description

The Write command contains one HEX record to be written to the remote device’s flash memory. The
Start-code field, see section 3.1 on page 6, of the HEX record has been stripped away before the host
sends it. Before writing, the remote device should verify that the HEX record is correct and that the address
it attempts to write to is legal. The replies are similar to those for the Update start command.

3.2.3.2 Message format

 Table 8. Data structure for Write command

3.2.3.3 Reply

 Table 9. Data structure for Ack reply

 Table 10. Data structure for Nack reply

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x05 Write command

Content
Byte count 1 The number of bytes (N) of the Data field
Address 2 The address in flash memory to which

Data should be written
Record type 1 (0x00) HEX record type

Data N Data to be written to flash memory
Checksum 1 HEX record checksum

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x07 Acknowledge (Ack)

Content
No content

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x08 Negative acknowledge (Nack)

Content
Error code 1 Error code (see Table 18. on page 15)
Revision v1.0 Page 11 of 28

nAN-18
3.2.4 Update complete
This command renders the transfer of new firmware complete.

3.2.4.1 Functional description

The Update complete command is sent when the host has sent all the HEX records of which the
firmware consists. If the remote device has indeed received all the bytes of data that it should, according to
the byte count total field in the Update start command, it marks the new firmware as bootable and can
start executing it after the host terminates the connection. The replies are similar to those for the Update
start command.

3.2.4.2 Message format

 Table 11. Data structure for Update complete command

3.2.4.3 Reply

 Table 12. Data structure for Ack reply

 Table 13. Data structure for Nack reply

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x06 Update complete command

Content
No content

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x07 Acknowledge (Ack)

Content
No content

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x08 Not acknowledge (Nack)

Content
Error code 1 Error code (see Table 18. on page 15)
Revision v1.0 Page 12 of 28

nAN-18
3.2.5 Read
This command specifies the number of bytes from the address in flash memory.

3.2.5.1 Functional description

The Read command is used by the host to verify that the new firmware is installed correctly. In the content
it specifies the number of bytes it wants to read, and the address in the remote device’s flash memory. The
host can check these bytes against the HEX file it has transferred. The reply is an Ack with the bytes the
host has requested. To make sure that remote device does not start executing a faulty firmware, this
command can be sent before sending the Update complete command. A Nack with an error code can
be sent if the host requests a read of an illegal address.

3.2.5.2 Message format

 Table 14. Data structure for Read command

3.2.5.3 Reply

 Table 15. Data structure for Ack reply

 Table 16. Data structure for Nack reply

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x04 Read command

Content
Byte count 1 Number of bytes (N) to read
Address 2 Flash memory address

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x07 Acknowledge (Ack)

Content
Data 1 N bytes of data from address

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x08 Negative acknowledge (Nack)

Content
Error code 1 Error code (see Table 18. on page 15)
Revision v1.0 Page 13 of 28

nAN-18
3.2.6 Exit
This command terminates the connection.

3.2.6.1 Functional description

The Exit command terminates the connection between the host and the remote device. This command
does not need Ack or Nack.

3.2.6.2 Message format

 Table 17. Data structure for Exit command

3.2.6.3 Reply

This command has no reply.

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x01 Exit command

Content
No content
Revision v1.0 Page 14 of 28

nAN-18
3.2.7 Ping
This command is a connection test.

3.2.7.1 Functional description

Note: This command is only sent by the USB-RF adapter to verify the connection between it and the
remote device.

The Ping command is sent to verify that the USB-RF adapter and the remote device are still connected.
The remote device replies to a Ping with a Pong. If the USB-RF adapter does not receive a Pong reply on
a set amount of Ping sent, it will consider the connection as lost, and should try to reconnect to the device.
The remote device also considers the connection lost if no Ping commands are received within a certain
amount of time.

3.2.7.2 Message format

 Table 18. Data structure for Ping command

3.2.7.3 Reply

 Table 19. Data structure for Pong reply

3.2.8 Error codes

 Table 20. Error codes

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x08 Ping

Content
No content

Message field/parameter Value size
(bytes) Data value Description

Header
Message type 1 0x09 Pong

Content
No content

Byte value Error description
0x01 Lost connection
0x02 Checksum failed
0x03 Illegal address
0x04 Illegal size
Revision v1.0 Page 15 of 28

nAN-18
4 Implementation

4.1 Project setup
To set up the attached project correctly you will need the following hardware, software, and project
structure:

Required hardware

• nRFgo Development Kit nRF24LE1-F16Qxx-DK, nRF24LE1
• nRFgo Development Kit nRF24LU1P-FxxQ32-DK, nRF24LU1+
• 2 x nRFgo Starter Kit nRF6700
• PC workstation with USB

Required software

• Keil µVision V4
• C51 Compiler
• BL51 Linker

• nRFgo Software Development Kit (SDK) version 2.2
• Windows 7 (32-bit, 64-bit)
• Microsoft Visual C# 2010 Express

Project structure

If you have not already done so, you should install Keil µVision and the nRFgo SDK. Once you have done
this, you can place the Firmware_updater folder in the …\nRFgo SDK
2.2.0.270\source_code\projects\nrfgo_sdk folder. This will ensure that the predefined project files will
have the correct include paths to compiler- and hal-directives. If you wish to place the project at a different
location you will have to set the include paths manually in Keil µVision. These are found under Project –
Options for Target ‘…’ - C51 – Include Paths.

You will find the Keil µVision project files for the nRF24LE1 update firmware in the Bootloader nRF24LE1
folder. A precompiled HEX file for the nRF24LE1 update firmware is found in the precompiled HEX folder.
This HEX file can be flashed directly to the chip if you do not want to build the project files before you test
out the functionality.

Demo firmware that can be used as the new firmware, is found in the precompiled-HEX folder.

Bootloader nRF24LE1

Common

USB-RF adapter nRF24LU1+

Host application

Firmware update

Precompiled HEX
Revision v1.0 Page 16 of 28

nAN-18
4.2 Implementing the nRF24LE1 update firmware
Most developers will want to modify the nRF24LE1 to the purposes of their specific product. When doing
so you should make the update firmware and the new firmware as independent as possible. To accomplish
this you should:

1. Keep the update firmware and the new firmware separate by locating them on different pages in
the flash memory. See section 4.2.1.

2. Build the nRF24LE1 update firmware as a boot loader. See section 4.2.2 on page 18.
3. Make sure that the update firmware cannot erase flash pages where its code is located. See

section 4.2.3 on page 18.
4. Do not use interrupts in the nRF24LE1 update firmware. See section 4.2.4 on page 19.

Sections 4.2.5 on page 19 to 4.2.7 on page 21 describe other factors you need to consider when creating
the nRF24LE1 update firmware.

4.2.1 Relocating the nRF24LE1 update firmware
Since the flash memory must be erased before a bit value is changed from 0 to 1, and it is only possible to
erase entire pages, it will simplify matters considerably if you locate the update firmware at different pages
than the new firmware. Our solution locates the update firmware at the last available pages in the flash
memory.

To achieve this in Keil µVision 4, go to Project - Options for Target - Target – Off-chip Code Memory, and
set Start to 0x3400 and Size to 0x0C00. These values are specific to this project and are decided based
on the code size of the update firmware. If you make any changes to the project make sure to check that
code size does not exceed 3 kB, and if so you must change the Start and Size value accordingly. You must
then also remember to change the BOOTLOADER_PAGES define-macro in the header file for the
nRF24LE1 update firmware to the correct number of pages.
Revision v1.0 Page 17 of 28

nAN-18
4.2.2 Boot loader
To solve the problem regarding initiating the nRF24LE1 update firmware, you should implement it as a
boot loader. This will ensure that you have the update capabilities of the device regardless of what new
firmware is installed.

When the nRF24LE1 boots it executes whatever it finds at address 0x0000 in code space. This first
instruction is called the reset vector and is a long jump to the start address of your program. You have to
make sure that the reset vector pointing to the update firmware is not overwritten by a reset vector from the
new firmware. If this happens, the boot loader with the update firmware would not be executed after
booting the device, and it would jump to the new firmware instead.

4.2.3 Erasing flash pages
You must make sure that the update firmware only can erase pages not containing the update firmware.
Since the update firmware is located in the last six pages, this means that you can only erase the first 26
pages. These pages available for the new firmware should be erased when the remote device receives an
Update start command from the host.

The following code lines show how the software prevents the erasing of pages where the boot loader
resides:

for (i = 1; i < FLASH_FW_PAGES; i++) {
 hal_flash_page_erase(i);
}
Moreover, “FLASH_FW_PAGES” is defined to limit the total pages that can be erased:

#define FLASH_FW_PAGES FLASH_TOTAL_PAGES - FLASH_BL_PAGES

Since this will erase the first page containing the reset vector, you must make sure to write the reset vector
back after the first page has been erased. This should be done preferably as soon as possible to minimize
the risk of losing the reset vector.
Revision v1.0 Page 18 of 28

nAN-18
4.2.4 Avoid using interrupts
Interrupts require an interrupt jump vector to be stored at locations specified in the nRF24LE1 Product
Specification. This jump vector will point to your specified interrupt function. However, if you choose to use
the RF interrupt for the communication, you will run into some problems.

Firstly, the new firmware is likely to be an application in need of the very same RF interrupt. This means
that you have to find a way to jump to either the nRF24LE1 update firmware’s function or the new
firmware’s function depending on which of them is currently executing.

Secondly, you would need to extract the new firmware’s interrupt jump vector when writing to flash, in order
to make sure that it does not try to overwrite the nRF24LE1 update firmware’s interrupt vector. As
mentioned earlier, you cannot overwrite a flash memory location, as it has to be erased before a write. We
are doing something similar to this with the reset vector, but this is a more complicated case.

The simpler solution you should use is to poll the RF IRQ bit, and explicitly call the “interrupt”-function
when the RF IRQ bit is set. This function should look just like a normal interrupt function, but without using
the function-name macro specified in the device header.

4.2.5 Storing important variables
There are several variables that you need to preserve in between device power resets. The nRF24LE1
update firmware needs to know if there is firmware installed on the device, so that the boot loader does not
start executing unverified code. The reset vector to the new firmware needs to be stored so that the boot
loader knows the entry point to the new firmware. Each new firmware also has a firmware version number
associated with it.

For code reference to this section, please see the function “startFirmwareUpdate()” in the file “main.c”
which is located in the project “bootloader_nRF24LE1”.

You should store these variables so that they are kept between power resets. It is therefore advisable to
store these in the non-volatile flash memory. One drawback with this solution is that it puts additional
limitations on the new firmware. We have placed these variables in the first bytes of the last page of flash
memory, page number 35. This means that if the new firmware erases this page for any reason, and does
not write these bytes back, the boot loader will not jump to/find the new firmware. If this limitation is too
severe for your application, you have to find another way to store these variables.
Revision v1.0 Page 19 of 28

nAN-18
4.2.6 Channel switching and connection timeout
The nRF24LE1 update firmware and the nRF24LU1+ USB-RF adapter should be able to use several
channels for their RF communication. If a channel cannot be used for communication because it is jammed
by other sources, a connection should be established on another channel instead.

You should select a set amount of channels you wish to operate on. In the included project files we have
chosen three channels, but you may choose more than that. Before a connection has been established the
nRF24LE1 update firmware on the remote device should listen to a channel for a short period of time,
before it changes to the next channel.

// Go to next channel
ch_i = (ch_i+1)%3;
hal_nrf_set_rf_channel(default_channels[ch_i]);

Once a connection has been established the channel should be kept until the connection is terminated or
lost.

The USB-RF adapter will consider the connection between it and the nRF24LE1 update firmware lost, if it
does not receive a Pong reply to its Ping command. Likewise, you should implement a connection timer in
the nRF24LE1 update firmware, that when it times out changes the nRF24LE1 update firmware’s state
from Connected to Listening. This timeout must be longer than the longest interval in between messages
sent received from the USB-RF adapter.

else if (state == CONNECTED) {
 connection_timer++;
 if (connection_timer > CONNECTION_TIMEOUT) {
 state = LISTENING;
 }

}

Revision v1.0 Page 20 of 28

nAN-18
4.2.7 Resetting RF parameters before leaving the boot loader
Table 21. lists the different parameters used for the Enhanced Shockburst™ communication in the
included project. These values can be used as is, but you will most likely want to choose your own.

It is a good practice to reset these values back to their reset values, shown in the last column in Table 21.
before you exit the boot loader. If this is not done you could end up with mysterious errors in the new
firmware. This is yet another way to make the nRF24LE1 update firmware and the new firmware more
independent.

 Table 21. Enhanced ShockburstTM communication parameters

4.2.8 Boot loader duration
Since the nRF24LE1 update firmware executes after each system reset, you should keep its duration short
so the user does not notice the delay, but long enough so that it can receive the INIT command.

In the included project this duration is controlled by two timeouts: CHANNEL_TIMEOUT and
BOOTLOADER_TIMEOUT. The first controls how long the update firmware listens to a channel before
switching to the next, while the second controls how many times it changes channel before executing to
the new firmware.

4.3 PC host application
To achieve correct transfer of the new firmware, the PC host application must do the following:

• Verify HEX file
• Initiate transfer correctly
• Optional: Verify the new firmware on the remote device by reading it back and comparing it to the

input file.
• Send Update complete when done.

The update firmware on the remote device only checks the checksum, and that the memory address it
writes to is within the available flash pages. If the host sends a HEX record that tries to overwrite another
recently written HEX record, the update firmware will not detect this. You must make sure that the host
application only sends valid HEX files to the update firmware.

Parameter name Parameter value Reset value
Channel 0x02, 0x06, 0x51 0x02
TX address 0xBADA551337 0xE7E7E7E7E7
PIPEO address 0xBADA551337 0xE7E7E7E7E7
Auto retry nRF24LE1:

5 retries,
500 µs wait

nRF24LU1+:
2 retries,
250 µs wait
(searching)
8 retries,
500 µs wait
(connected)

3 retries,
250 ms wait

Payload width 0x20 (32) 0x00
Operation mode nRF24LE1:

1 (PRX)
nRF24LU1+: 0
(PTX)

0

Power mode 1 0
Revision v1.0 Page 21 of 28

nAN-18
To initiate an update, the host needs to send the size of the firmware in bytes. This is not the size of the
HEX file but the sum of all the byte-count fields. It also needs to send the reset vector of the new firmware
and a version number associated with the new firmware.

Verifying that the update has been successful can be done by reading back data from the remote device,
according to the HEX file. If the data read from the device is the same as in the HEX file, the firmware
update has been successful, and it can send the Update-complete command. If not, it can try to update
again. By verifying the new firmware before you send the Update-complete command, you are sure that
the nRF24LE1 update firmware does not start a faulty new firmware.

Regardless of verification or not, the nRF24LE1 firmware must receive an Update complete command
to start executing the new firmware. The PC host application is described in further detail in the application
note nAN-22.

4.4 nRF24LU1+ USB-RF adapter

 Figure 5. USB-RF adapter state diagram

The nRF24LU1+ chip acts as an adapter between the host application on the PC and the nRF24LE1
update firmware. Figure 5. shows the state machine of the adapter. It shows how the USB-RF adapter
reacts to the commands sent by the host. The adapter uses Enhanced Shockburst™ to communicate with

SEARCHING
Send Init to device

FORWARD
Send command

to device

EXIT
Send Exit to

device

CONNECTED
Send Ping to

device
WAIT_ACK

IDLE

wait timeout;
Send Nack to host

Ack or Nack received from
device; Send reply to host

transmission
success

Ack received from device;
Send Ack to host

Update start, Write,
Update complete or
Read received from

host

Init received from host

Exit received from host

transmission failed;
Send Nack to host

Pong not received;
Send Nack to host.

Exit received from host

Pong received
from device

transmission failed;
Change channel

Enhanced ShockburstTM
Revision v1.0 Page 22 of 28

nAN-18
the remote device. In the attached project the adapter uses HID to communicate with the host over USB.
How this is done is explained in more detail in the application note nAN-22.

4.4.1 Establishing a connection
If the host wishes to establish a connection it sends an Init command to the USB-RF adapter over USB.
The USB-RF adapter should then send the Init command over Enhanced Shockburst™ to the
nRF24LE1 update firmware on the remote device. Enhanced Shockburst™ will automatically acknowledge
this message if the remote device is listening on that channel. If the USB-RF adapter receives an
automatic acknowledge, it should wait for an Ack reply from the remote device and send this reply back to
the host over USB.

If the update firmware on the remote device is not listening on the channel that the Init command was
sent over, the USB-RF adapter will not receive any automatic acknowledge. It should then change to the
next channel and send the Init command there.

Once in the CONNECTED state the channel will remain static until the connection is terminated by the host
or is lost.

4.4.2 Forwarding commands from host to remote device
The commands received from the host while the USB-RF adapter is in the CONNECTED state, are
forwarded to the remote device. The reply from the remote device is sent to the host. If either the
transmission fails or the wait timer expires before a reply is received, the USB-RF adapter sends a Nack
with the error code for Connection lost to the host.

4.4.3 Connection termination
The correct/proper way of terminating a connection is to receive an Exit command from the host while
being in the CONNECTED state. If the USB-RF adapter is in the SEARCHING state, and has not yet
connected to the remote device, it will not stop trying to connect unless it receives an Exit command from
the host.

While being in the CONNECTED state, the USB-RF adapter sends Ping commands to check that it is still
connected to the remote device. If it does not receive a Pong reply within the set amount of time, it will
consider the connection lost and send a Nack message to the host over USB to notify the host application
of the connection lost.

The connection between the USB-RF adapter and the nRF24LE1 update firmware will be considered lost if
the USB-RF adapter fails to receive the automatic acknowledge from nRF24LE1 update firmware when
sending over Enhanced Shockburst™.

4.5 New firmware considerations
By having the nRF24LE1 update firmware as a boot loader on the nRF24LE1 chip you place some
limitations on the new firmware, if they are to co-exist peacefully. Normally the new firmware can occupy
16 kB of flash memory, but because the boot loader occupies the last six pages, the total size of the new
firmware cannot exceed 13 kB.

You should also make sure that the linker does not try to locate any of the new firmware’s code on these
last six pages. The boot loader should not accept the HEX file, if it tries to write an address above 0x3400.

If the new firmware enters a mode of operation that causes a system reset, any data variables stored to
DataRetentive memory will be overwritten by the nRF24LE1 update firmware. The new firmware should
therefore not rely on this feature.
Revision v1.0 Page 23 of 28

nAN-18
The nRF24LE1 update firmware also stores some variables in non-volatile memory. These should not be
erased by the new firmware, unless you are sure that they are written correctly back in the same location
as before.

Needless to say the firmware should not attempt to erase any of the flash pages in code space that the
boot loader depends on. More specifically page 0 and pages 26-31.

With that said, the nRF24LE1 update firmware is designed such that the new firmware can be created with
as little knowledge of the boot loader as possible. As long as the new firmware complies with the
restrictions outline above, the new firmware should work just as if the boot loader were not there.
Revision v1.0 Page 24 of 28

nAN-18
5 Discussion
This application note together with the included project files enables you to create a product that is capable
of over-the-air firmware updates. The files can be used as-is, as also the USB-RF adapter most likely will
be, but typically, the host application on the PC and the nRF24LE1 update firmware should be tailored to
your specific needs.

There are several ways to optimize or change the nRF24LE1 update firmware which have not been
covered in the previous chapters of this application note. Below we outline some strategies to alter the
update firmware if your specific product requires so.

5.1 Optimizing for size
If your product specific firmware requires more than the 13 kB of flash memory available, and you are
unable to reduce its size, you can consider optimizing the nRF24LE1 update firmware so that it occupies
fewer pages. Remember though, if you reduce the size of the nRF24LE1 update firmware, but it still
occupies the same amount of pages, you have not gained any space for your new firmware.

5.1.1 HAL functions
The project employed in this application note uses several functions provided by the HAL to access flash
memory and RF communication. These functions are used primarily because they are assumed to be
familiar to the reader, and because of good readability. However, they are not highly optimized and could
be replaced if size is crucial for your application. A more detailed description of each of the HAL functions
is found in the nRFgo SDK documentation.

5.1.2 Reusing shared memory segments to reduce code redundancy
The project files already use a high level of automatic optimization provided by the compiler, so any
optimization you want made must be performed manually.

 Figure 6. Size of nRF24LE1 update firmware’s flash memory segments
Revision v1.0 Page 25 of 28

nAN-18
Figure 6. on page 25 shows that the size of the HAL_NRF segment is well over one page in size, so if you
use the same code in your product specific firmware, you can share this segment between the two
firmwares to reduce redundancy. The same can be done for the HAL_FLASH segment, but considering its
size it is most likely not worth it unless it is done in addition to the HAL_NRF segment, since they both can
be located within two pages.

5.2 Security
This implementation makes no assumptions about security requirements. If you wish to protect your
firmware from being known, or disable writing or reading from flash memory for anyone else, you will need
to add security mechanisms to your implementation. If you use the implementation provided in the included
project, anyone can access the firmware by using the application protocol.

The nRF24LE1 comes with an on-chip encryption/decryption accelerator, which can be used to protect the
firmware. For more information on the accelerator see the nRF24LE1 Product Specification. The nRFgo
SDK comes with a crypto library based on AES counter mode (CTR). For more information on lib_crypt
see the SDK documentation.

If you wish to disable unauthorized access to the chip, you can require an authentication on write
commands. The perhaps easiest solution to prevent read access to the firmware is to disable the Read
command entirely. This does mean that another solution must be found, if you wish to verify the firmware
before enabling it. It is strongly recommended that the firmware is verified before it is enabled, and can
start executing.

5.3 Overcoming challenges to RF communication

The application protocol presented in this application note is built upon the Enhanced ShockburstTM
protocol which is explained in the nRF24LE1 Product Specification. The goal is to create a reliable
communication channel between the host application and the remote device. Enhanced ShockburstTM
provides automatic packet handling, up to 32 bytes of payload, auto acknowledgment and retransmission,
as well as CRC message integrity verification.

The 2.4 GHz RF range can be susceptible to disturbances from WLAN and other devices operating in that
range. It is therefore desirable to be able to operate on more than one channel. The channels in the
implementation were arbitrarily chosen, so you may wish to choose your own.

6 References
• nRF24LE1 Product Specification
• nRFgo Software Development Kit
• nAN-22
Revision v1.0 Page 26 of 28

nAN-18
7 Glossary

Term Description
Boot loader A routine executed immediately after system start

which is responsible for initiating the other functions of
the device

Compiler A compiler is a computer program (or set of programs)
that transforms source code written in a programming
language into another computer language, typically to
create an executable program.

CRC Cyclic redundancy check
Firmware A program or set of instructions programmed on a

hardware device. Usually stored in flash memory or
EEPROM

Flash Non-volatile computer storage chip that can be
electrically erased and reprogrammed

HAL Hardware abstraction layer
HEX record One line in the Intel HEX format, containing the fields

specified in Table 1. on page 5
Interrupt
function

Function executed after an interrupt event has
occurred. The MCU transfers program control to the
interrupt function, and lets it execute fully before
transferring it back to the previous, executing function.

IRQ Interrupt request
Linker A computer program that takes one or more objects

generated by a compiler and combines them into a
single executable program

MCU Microcontroller
Reset vector The first three bytes in flash memory, containing a long

jump instruction to the firmware startup segment. The
first command that is executed after a system reset

RF Radio frequency
Segment One of the sections of a program in flash memory
Revision v1.0 Page 27 of 28

/wiki/Computer_program
/wiki/Source_code
/wiki/Programming_language
/wiki/Object_code
/wiki/Executable
/wiki/Object_file
/wiki/Executable

nAN-18
Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications

Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury. Nordic
Semiconductor ASA customers using or selling these products for use in such applications do so at their
own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such
improper use or sale.

Contact details

For your nearest dealer, please see http://www.nordicsemi.com.

Receive available updates automatically by subscribing to eNews from our homepage or check our
website regularly for any available updates.

Main office:

Otto Nielsens veg 12
7004 Trondheim

Phone: +47 72 89 89 00
Fax: +47 72 89 89 89
www.nordicsemi.com

Revision History

Date Version Description
September 2011 1.0
Revision v1.0 Page 28 of 28

http://www.nordicsemi.no

	1 Introduction
	2 Challenges with firmware updates
	3 Theory of operation
	3.1 Data format
	3.2 Application protocol
	3.2.1 Init
	3.2.1.1 Functional description
	3.2.1.2 Message format
	3.2.1.3 Reply

	3.2.2 Update start
	3.2.2.1 Functional description
	3.2.2.2 Message format
	3.2.2.3 Reply

	3.2.3 Write
	3.2.3.1 Functional description
	3.2.3.2 Message format
	3.2.3.3 Reply

	3.2.4 Update complete
	3.2.4.1 Functional description
	3.2.4.2 Message format
	3.2.4.3 Reply

	3.2.5 Read
	3.2.5.1 Functional description
	3.2.5.2 Message format
	3.2.5.3 Reply

	3.2.6 Exit
	3.2.6.1 Functional description
	3.2.6.2 Message format
	3.2.6.3 Reply

	3.2.7 Ping
	3.2.7.1 Functional description
	3.2.7.2 Message format
	3.2.7.3 Reply

	3.2.8 Error codes

	4 Implementation
	4.1 Project setup
	4.2 Implementing the nRF24LE1 update firmware
	4.2.1 Relocating the nRF24LE1 update firmware
	4.2.2 Boot loader
	4.2.3 Erasing flash pages
	4.2.4 Avoid using interrupts
	4.2.5 Storing important variables
	4.2.6 Channel switching and connection timeout
	4.2.7 Resetting RF parameters before leaving the boot loader
	4.2.8 Boot loader duration

	4.3 PC host application
	4.4 nRF24LU1+ USB-RF adapter
	4.4.1 Establishing a connection
	4.4.2 Forwarding commands from host to remote device
	4.4.3 Connection termination

	4.5 New firmware considerations

	5 Discussion
	5.1 Optimizing for size
	5.1.1 HAL functions
	5.1.2 Reusing shared memory segments to reduce code redundancy

	5.2 Security
	5.3 Overcoming challenges to RF communication

	6 References
	7 Glossary

