> ISEMICONDUCTOR

Creating Applications with
the Keil™ C51 C Compiler

NAN-15
Application Note v1.1

Key words

Development using nRFgo SDK

Setup of Keil compiler

Getting started with your first application
Debugging your application with Keil compiler
Developing with nRF devices

All rights reserved. Keil is a trademark of ARM.
Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.
2011-06-29

N 0 R D Application Note nAN-15

SEMICONDUCTOR

Contents
1 INErOAUCEION ... 3
2 Theory of operation.........ccccceiiiiiiiie e ————— 4
2.1 Prerequisites to the tutorial ... 4
2.2 Organizing the NRFGO SDK ... 4
3 Developing with NRFgo SDK..........coooiiiiiiiieerrrr s 6
3.1 Step 1: Set up your first Keil projectoooovmiiiiiiiieee, 6
3.2 Step 2: Your first appliCationccooooe oo 16
3.3 Step 3: INCluding fileS.......oooiii e 21
3.4 Step 4: Debug your ProjeCtuuuciiiieii e 28
L S 0o 4 o2 [=3 T) o 1= 34

Appendix A - References.........ccccoiiiiiiminmneessssssssssssss s sss s sssssssnas 35

Appendix B - Troubleshooting.........cccccooimmmmmciiiiiieccreer e 36

Revision v1.1 Page 2 of 37

S N o R D Creating Applications with the Keil C51 C Compiler

SEMICONDUCTOR

1 Introduction

This application note will help you start developing with an nRF device using the nRFgo development
platform. This application note contains a step-by-step guide on how to set up your first project in a Keil
compiler and explains how to debug using nRFprobe.

The target device for this tutorial is the nRF24LE1, which is a single chip solution for wireless applications.
The nRF24LE1 features an ultra low power nRF24L01+ 2.4 GHz transceiver core with an 8051 flash
microcontroller, ADC and rich set of digital interfaces.

This tutorial can also be used as reference when developing with other nRF devices with an 8051
microcontroller. In such cases you will need to switch to different nRF devices as shown in Figure 4. on
page 7. The setup of the compiler, programming the device and debugger are all carried out in the same
way as for the nRF24LE1.

Revision v1.1 Page 3 of 37

N 0 R D c Application Note nAN-15

2 Theory of operation

The nRFgo Software Development Kit (SDK) with the Keil C51 C compiler provides a flexible and simple
way to develop using an nRF device. By following this guide you will acquire basic knowledge about the
Keil compiler and nRFgo SDK so you can create, debug and program your first application.

2.1 Prerequisites to the tutorial

We recommend that you consult the documentation for the nRFgo SDK, nRFprobe and user
documentation for the nRFgo Starter Kit while you carry out related development work.

Necessary software and hardware for this application note are listed below in the order you should install
them:

Software

* Keil C51 (Version 9.00 or newer)

* nRFgo Studio (Version 1.4 or newer)

* nRFgo SDK (Version 2.2 or newer)

* nRFprobe (Version 1.2.0.5585 or newer)

Hardware

* nRFgo Starter Kit (hnRF6700)
* nRFgo Development Kit for nRF24LE1 (nRF24LE1-F16Qxx-DK)

The following steps show how you install the software:

1. All nRFgo software is included in the nRFgo kits, but you must download the Keil compiler
separately from www.keil.com. For the purposes of this application note the evaluation version of
the Keil compiler is sufficient.

2. Make sure to download and install the latest software before you follow the instructions in this
application note.

3. After installing all the software listed above, you must connect the nRFgo Motherboards to the
computer and wait for the driver to install.

4. Thereafter, start up nRFgo Studio and update the firmware if prompted. Exit the nRFgo Studio
application before you continue.

5. You can use nRFgo Studio to program nRFgo modules or your own prototypes through the ISP
header. For development, use the Keil compiler along with the nRFprobe debugger.

2.2 Organizing the nRFgo SDK

The nRFgo SDK is built up in a tree structure. Here is a short description of the most important folders in
the tree structure:

\Docs

This is the documentation for the SDK. It is mandatory reading in order to understand how a project is built
up. It contains a description of the functionality for the software modules included in the SDK and of how
they interact.

\Precompiled files

This folder includes the precompiled HEX files for the example projects. If you are using the evaluation
version of the Keil compiler you will not be able to compile all the projects due to a code size limit, but you
can still run the examples by programming the HEX files with nRFgo Studio.

Revision v1.1 Page 4 of 37

http://www.keil.com

N o R D Creating Applications with the Keil C51 C Compiler

> SEMICONDUCTOR

\Source code\gazell

Gazell is a link and pairing library for wireless applications.

\Source code\hal

The Hardware Abstraction Layer (HAL) contains general interface functions to quickly start developing with
the hardware modules embedded in an nRF chip. You will use some or all of these files for any project you
develop. The path to these files needs to be included in the project.

\Source codel\lib

The libraries interface with the HAL to provide more specific functionality. An example of this is the RF test
library that can be used to set up different RF test modes.

\Source code\projects

The project folders contain the example projects included in the SDK. This is where you normally will put
your own project.

=

File Edit View Fawvorites Tools Help | |'f
GBack - "-_;J . lﬁ /.__j Search H__'“ Folders ‘ o B x n ‘ '
Address I@ Ciinordic SemiconductorinRFgo 3Dk v2, 113ource codetprojects j @o
Faolders =
=) nRFgo SOK v2.1 -] bootloader-32k
uﬂ Docs

[5) Precompiled hesx
= [Source code
I compiler
I3 gazel
I3 hal
I lib
B [projects]
(L5 ade_examples
[C5) bootloader-32k
[C5) display_jowstick_escample
[2) enhanced_shockburst_example
(53 gazell_configuration_toal
(53 gazel_examples
(53 vart_example

display _jowstick_example enhanced_shockburst_examples

gazell_configuration_tool gazell_examples

oouwo

uart_example

= 5 Windows
2 app
= di -
A | »
|.'-" objects {Disk free space: 173 GB) |D bytes | -_-‘ My Computer y

Figure 1. Folder structure for nRFgo SDK

Revision v1.1 Page 5 of 37

SNINORDIC

3

Developing with nRFgo SDK

You can break down the development process for nRFgo SDK into four steps. These steps, listed below,
range from the setup of the Keil compiler to the debugging of your first project:

PoObD~

3.1

Set up your first Keil project
Your first application
Including files

Debug your project

Step 1: Set up your first Keil project

Before writing any lines of code you need to create a new project in which you configure the Keil compiler
to use the specific nRF device and include the paths that you need in the application.

1.
2.
3.

Startup Keil uVision from the Start menu in Windows.

Thereafter, select Project, New uVision Project from Keil's menu.

You are prompted to specify where you want to save your new project. In this case you want to
make a new project in Source code\projects and you should call the project “my_first_project”.
(see project folder encircled in Figure 2.)

A -Ioix
Eile Edit ¥iew Project Flash Debug Peripherals Tools SVCS Window Help

HR=1= - A=Y - e W W N RN) TN TEEIRS
E/._nu\«;’u W z & B

Create New Project
Savein: [5 projects | & ®m ek E-

|)adc_examples

| Shhaotloader-32k

| hdisplay_joystick_example

|22 enhanced _shockburst_sxamples

| =3 gazell_configuration_tool
E:]gaze” examples

f" my'_ﬁrstjro]ect D

File name: I Open

Saveastyps: [Project Files [*uvpra) Cancel

Epr.. [€F6o.. |{}Fu.. |04Te..

[I I I
Figure 2. Create a new project

Revision v1.1 Page 6 of 37

N o RD Creating Applications with the Keil C51 C Compiler

| 2 SEMICONDUCTOR
4,

Create a new folder in the Source code\projects called “my_first_project” and then select Save.
See Figure 3.

Create New Projeck ﬂll
Save i IE} my_first_project j E] I‘j‘ '

—

File name; my_firgt_project) <| Save I
Save a3 lype: | Praject Files [*.uvproj =l Cancel |
F

Figure 3. Naming the project

Select Device for Target ‘Target 1°.. 5[
cru |

Wendor: Mordic Semiconductor

Device: nRF24LET [Use Extended Linker [L<51) instead of BLS1

Toolset, CH1 ™| Wse Extended|tssembler [5:51] instead of A51

[rata bage Description:

MAIC a|| [Z4GHz 5M band radio with emhanced G061 MCL,]
@ Myson Technology up ta 2kbps on air data rate.
-8 Nordic Semiconductar 19t 5 supely e,

16-32-bit multiplication-division co-processor (MDU),
16 kBytes of on-chip Flash,

1 kBytes on SRAM,

1 kBytes NV data memory.

" 512 Bytes MY data memary [extended endurance),
EFSES Muliband J Interrupt controller with 18 sources and 4 priority levels,

-£3 rRF24E1

o

1 &nalog comparator,
-£4 nRFLUTP-F16

10 Bit ADC,
Lfd PRFLUAP-F32 maldu#egi_SE'l slaﬁe and master, UART,
[]__e Muvaton three 16-bit tirmers/cournters, —
" AES encryption/decryptioh co-pracessar,
5@ NP (founded by Phips] Randaom number generator,
[]"2 0Kl - 24fire interface, -
4| | o» kil >

Cancel | Help |

Figure 4. Selecting the correct device

5. Choose the device you want to start developing with (see device encircled in Figure 4.). For your
project you will use the nRF24LE1. If you are using the full version of Keil uVision PK51 you can
also choose to use the extended linker/assembler. However for this project you will use the
evaluation version of the Keil compiler.

6. Select OK.

Revision v1.1 Page 7 of 37

N D I c Application Note nAN-15

SEMICONDUCTOR

7. Select No when prompted to copy the standard startup code to the project folder. (The startup
code can be added later if required.)

wvision

\ ?) Copy Standard &051 Startup Cade to Project Folder and Add File ta Project 7

Yes Mo |

Figure 5. Dialog box

=101 x|

[y _first_project - p¥isiond
Eile Edit View Project Flash Debug Peripherals Jools SVCS Window Help

A= - IR AEEAE A XY VY e E Ty T =R
Do [8 e | 88| Tagett Iy
B R
4K Options for Target Target 1., Alt=F7
Open File
Open List File

Open Map File

Rebuild all target files

CE

Build target F7
Translate File

Stop build

i

Add Group...
Add Files to Group...

Remaoye ltem

ﬁ Manage Components...

Show Include File Dependencies

Epr. (€380, | 1} Fu.. |047c..
x

]

Configure target options [

|[simulation Il 0 4

Figure 6. Main window

8. You need to configure the project before you can include files and start to write code. Right-click
on “Target 1” in the Project tree view and choose Options for Target from the context menu.

Revision v1.1 Page 8 of 37

Device | Tarad isting | User | C51 | 451 | BLS1 Locate | BLS1 Mise | Debug | Utiites |

Select Folder for Objects... | Mame of Executable: Imy_first_proiect

% Create Executable: \my._first_project

¥ Drebug Information v Browse Infarmation

®leate HEX Fil: HEX Format: IHEX-ED vl

" Create Librany: . my_first_project. LIE [Create Batch File

ok I Cancel | D efaults | Help |
Figure 7. Check “Create HEX file”

10. Create a HEX file in the “Output” tab (see Figure 7.) to later program the nRF24LE1.
11. Next activate the “C51” tab and include some folders where you can later find the files you need
for your application.

Dptions for Target 'Target 1" 5'

Devic:el Targetl Dutputl Listingl Usger @' a1 I EL51 Locatel BL51 Misc:l Debugl Utilitiesl

— Preprocessor Symbaols
Defing; I
Undefine; I
— Code Optimization
W amings: IWarningIeveI Zz j
Level: I 8: Reusze Common Entry Code j Bits to gound for float compare: m

Emphasiz: IFavor zpeed YI [Global Register Colaring % Intermupt vactors at address: [0-0000

= | Linker, Code Packing [mas, &dE A EalL] (I G il s

Don't uge absolute register accesses . .
r g ¥ Enable ANSI integer promotion rules

Compiler |BROWSE DEBUG OBJECTEXTEND TABS (2]

=
control ;I

string

Include
Paths
Mizc
Controls

Ok I Cancel | Drefaults | Help |
Figure 8. Selecting to include paths

Revision v1.1 Page 9 of 37

S o RD Application Note nAN-15

SEMICONDUCTOR

Folder Setup

|Setup Carnpiler Include Paths:

QK. I Cancel |

Figure 9. Selecting folders to include

12. By default no paths are included, so you need to include four paths for this project, from the
“Folder setup” dialog. See Figure 9.
13. Use the function buttons to include all the paths as displayed in the screenshots in Figure 10. on

page 11.

Revision v1.1 Page 10 of 37

NORD

Creating Applications with the Keil C51 C Compiler
SEMICONDUCTOR

14. Figure 10. show the paths that contain the files needed for this project.

Browse for Folder il

Select Folder:

C:\Mordic Semiconductor\nRFgo SDK

119 A VI irn andalbol

O | nRFgo SDK 2.2.0.270 A
| Docs
precompiled_hex
source_code
compiler

[l o

|
| gazell
.

| nrf24l01p
| nrf24lel

| nrf24lulp LI

Browse for Folder 1]

Select Folder:

C:\Nordic Semiconductor\nRFgo SDK

71 A AT s Andalhal aeAINT .

= | nRFgo SDK 2.2.0.270 d
| Docs

| precompiled_hex

= | source_code
M | compiler
= | gazel
= | hal
|
| nrf24lel
| nrf2dluip j

Browse for Folder il

Select Folder:

C:\Nordic Semiconductor\nRFgo SDK

B SRR s - T

B | nRFgo SDK 2.2.0.270 j
| Docs

precompiled_hex

B). source_code
| compiler

| gazell
= | hal
| nrf24lo1p
|
| nrf24lulp j

Browse for Folder il

Select Folder:

C:\Mordic Semiconductor\nRFgo SDK
T e =

= | Nordic Semiconductor
= | nRFgo SDK 2.2.0.270
I Docs
| precompiled_hex J
= | source_code
E). compiler
| T
:
| iccB051
| gazell LI

coce

13

Figure 10. Browse to the folders to include, and repeat for four folders

Revision v1.1 Page 11 of 37

SEMICONDUCTOR

S N o R D I c Application Note nAN-15

15. After choosing the folders you want to include, confirm your choice by selecting OK in the
“Browse for folder” dialog. See Figure 10. on page 11.

Fodersetup 21x|

|Seu.|p Compiler Include Paths:
Addhal

AN Ahalinrf24101p

A Ahalinrf24le1

A Acompilericommon

OK I Cancel |

Figure 11. Confirm by pressing OK

16. The folders you now have included contain all the HAL files that you will use later to configure the
various hardware modules inside the nRF24LE1. If you are developing with another device, you
will need to include the hardware specific files for that device. All devices supported by the HAL
have their own folders. Select OK in the “Folder setup” dialog as shown in Figure 11. when done.

17. Required paths are now included in your project. See Figure 12.

Options for Target 'Target 1') il

De\ncel Target' Output' L|st|ng| User €51 |A51 | BL51 Locatel BL51 Mlscl Debugl Utlhtlesl

— Prepr Symbols

Define: I

Undefine: I

— Code Optimization

Wamings: |Warmninglevel 2 LI

Bits to round for float compare: |3 VI
Emphasis: IFavorspeed ~| [Global Register Coloring [V]| InEmiptyeciomat add IMUDD
v Interrupt vectors ataddress:

[Linker Code Packing) (s AP SACALL

Level: I 8. Reuse Common Entry Code LI

[~ Keep variables in order

Don'tuse absolute register accesses . .
L d [v" Enable ANSIinteger promotion rules

lnglggz |..\..\.\ha|;.\..\..\ha|\nrfz4|mp_.\.\.\.ha|\nrr24|el;..\..\..\compner\common

Misc I
Controls

Compiler |BROWSE INCDIR(.\.\\hal,.\.\.\hal\nd24101p;. .\ \hal\nrf24le1;. .\ \compilericommon) DEBUG :I
control |OBJECTEXTEND TABS (2)
string LI

ok | cancel | Defauts | Help |

Figure 12. Required paths now included in the project

Revision v1.1 Page 12 of 37

N o R D Creating Applications with the Keil C51 C Compiler

SEMICONDUCTOR

—_

8. Ifyou are using the extended linker of Keil you have the option to write ‘ REMOVEUNUSED’ in the
“Misc controls” field in This will reduce code space by removing unused functions during
compilation.

19. When you compile a project with functions that are not used, a related warning message may
appear. To disable this warning you can write '15, 16’ in the “Disable warning numbers” field. See
encircled area in Figure 13.

20. Now set up the debugger to use with the Keil compiler. Take care to select the nRFprobe Keil
driver as shown in Figure 14. on page 14 and Figure 15. on page 15.

21. If you cannot find nRFprobe Keil Driver from the list, then make sure you have installed nRFprobe

before you continue.

Options for Target 'Target 1° ﬂ

Devicel Targetl Dulputl Listingl Uzer I CH1 I AR1 I BL51 Locaebugl Utililiesl

W arnings e

Dizable ‘Warning Numbers(&'I U

[~ uze linker contral file:

Create... | Browse... Edit....

Lo

Dwerlay

Misc

[~
-
cohtrals LI
-
3

Linker 10 "my_first_project”
contral - |RAMSIZE(25E)
stnng

0k I Cancel | Defatilts | Help |

Figure 13. Disabling two common warning messages (optional)

Revision v1.1 Page 13 of 37

Application Note nAN-15

Options for Target ‘Target 1°

Device | Target | Output | Listing | User | C61 | 451 | BL51 Locate | BLET M

X

" Use Simulator Settings | Lol NEC S FFTobe kel Diive Settings |
[Limit Speed to Feal-Time
v Load &pplication at Startup v Run to main() v Load Application at Startup I Run tao main()
Initialization File: Initialization File:
|] B]] o] Ede |
Restore Debug Session Settings Restore Debug Session Settings

v Breakpoints v Toolbox v Breakpaints v Toolbox

¥ “watchpoints & PA ¥ “watchpoints

¥ Memary Display ¥ Memory Display
CPU DLL: Parameter: Driver DLL: Pararmeter:
|ssu51.D|_L | ISSDELDLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDP51 DLL I-pHF24LE1 ITP51 DLl I-pHF24LE1

(0]4 I Cancel | Defaults | Help |

Note: Make sure to check “Use”. See the encircled area in the “Debug” tab.

Figure 14. Selecting the nRFprobe debug driver

Revision v1.1

Page 14 of 37

N o R D Creating Applications with the Keil C51 C Compiler

> SEMICONDUCTOR

Options for Target ‘Target 1° 5[

Device | Target | Output | Listing | User | C51 | 451 | BLS1 Locate | BLS1 Misc | Debug Utiities

— Configure Flash Menu Command

' Use Target Driver for Flash Programming

nRFProbe Keil Driver
It Fie: | e

" Uge External Taal for Flash Programming

D:ummand:l”'fl:"'z'g _I

Arguments; |-2 HH -w

pdate T arget before Debugging

™| Bun Independent

0k Cancel Defaults Help |

Note: Make sure to check “Update target before debugging”.

Figure 15. Selecting the nRFprobe debug driver

22. By selecting the Settings button in Figure 15. you can configure the nRFprobe debugger so you,
for instance, can program or debug your own hardware. Refer to the documentation for the
nRFgo Starter Kit on how to connect your own hardware.

nRFProbe Settings x|

Flash Programrming | rRFgo boards |

@nable debugging (set debug bvte in info page)

[Program external device (nRF ISP connector)
™ Program device through the JTAG inkerface

¥ always erase the whale Flash when programming

Ok I j Cancel |

Figure 16. Settings for the nRFprobe driver (optional)

Revision v1.1 Page 15 of 37

N o R D I c Application Note nAN-15

SEMICONDUCTOR

Note: If you want to run the application stand alone, then you need to uncheck “Enable debugging”
(see example of this box checked in Figure 16. on page 15) in the “nRFProbe Settings” dialog
before programming the device.

23. Click the OK button in the “nRFProbe settings” dialog to use the changes you have made to the
project, and save the project from the File menu by selecting Save All.

24. You can right-click in the Project tree view to add and also rename some of the folders to give
them more appropriate names. See encircled area in Figure 17. for illustration.

[Rmy_first_project - pisiond = |ol x|
Eile Edit View Project Flash Debug Peripherals Tools SVCS Window Help

N A@| s a@d|oc e PhaREFprp@f S @
i\.ﬁmﬁ]\\gﬁ‘gg‘Myhlslprmsct 'ﬁ‘ﬁ%

[=-%_4 My first project

I |ii\icatinn

o o

||nRFPmbe It(| Vi

Figure 17. Project set up and ready for source code

You have now completed Step 1 of the tutorial, and the project is ready for you to start writing your first
application. This step is outlined in section 3.2 on page 16.

3.2 Step 2: Your first application

The project is now configured, and you can start writing the first few lines of application code in order to
compile and program the nRF24LE1. This section explains how you do so.

1. Before you can start writing code you must add an empty source file called main.c in the project
folder.

2. From the Project tree view’s context menu, select Add files to group “application”... as shown
in Figure 18. on page 17 The “Add files to group ‘application’ dialog appears.

Revision v1.1 Page 16 of 37

0 RD Creating Applications with the Keil C51 C Compiler

=10l x|

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

OIS A %G9 e PSS | 75| @ e
@ &]@E&%|%Q|Myﬁrstpmiect h ;&|£%
Project

Open File
Open List File
Open Map File

| Rebuild all target files
Build target F7

Translate File

£ stop build

Add Group...
| Add Files ta Group "Application’...

E P @B" {r Remoyve Group 'Application’ and its Files
ﬁ Manage Components...

Show Include File Dependencies

Kl

Add Files to current Project Group

|| nRFProbe I((| y

|
Figure 18. Adding the first file to the project

Add Files to Group "Application®] ﬂﬁl

Look jr: I@ rny_first_project j - = E9-

Ej my_first_project.pla
my_FirstJ:roject.uvproj

L o

File name: — [main.c Add
Files of type: [41 fles 7] =l Cose |

&

Figure 19. Creating a new file called main.c

4. Create a text file by right-clicking in the folder view and choosing New text document and
renaming the created file to main.c. See Figure 19. This file will work as an entry point for your
application.

Revision v1.1 Page 17 of 37

N o Ic Application Note nAN-15

N [=lES
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help
HE=1" 1 IR NN m = = JE i | B R Q| e
i 1] B BF | My firzt project A

main.c] * X

=183 My first project T j

-5 Applicatian

Er. €56 {3 F.|0st.| (1] | :IJ
Kl _"l_l
| ||nRFProbeK(| Y

Figure 20. Main window with empty main.c file

6. Add the empty main.c to the project, write some lines of code and compile it.

7. You can copy Code example 1 from Figure 21. into the space for writing code below the main.c
tab for your first application. See Figure 22. on page 19.

8. The example code will continuously toggle Port 0 pin 0. If Port 0 pin 0 doesn't toggle on your

development kit module, then you should check the header on the module is not connected to
the 32 kHz XO.

/* My first application */
#include <Nordic\reg24lel.h>

// Maln routine
void main()
{
// Set PO as output
PODIR = 0x00;
while (1)
{
// Toggle a GPIO
POO = !'P0OO;
}
}

Figure 21. Code example 1

Revision v1.1 Page 18 of 37

N o R D Creating Applications with the Keil C51 C Compiler

> SEMICONDUCTOR
9.

After writing the code example into the main.c you can compile the program by selecting
Rebuild. See Figure 22.

[E]my_ﬁrst_prniect - p¥isiond]] |
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help

HE=1" - I s = = g | 3 rRe Qe
Pk (3 5 | My first project AN -

03 // Register file for the nRF24LE1
04 #Hinclude <Nordichireg2dlel.h>

0B S/ Main routine

07 woid maini)

og

03 S Set PO oas output
10 PODIR = 0Ox00;

1 while (1]

12 {

13 A4 Toggle a GRIO
FOO = 'POO:

| | »

Ee. |€Fe.| GF. 0,7 ||| Llj

compiling main.c... ;I
linking...

Progragm S3ize: dats=9.0 xdata=0 code=Z:z

creating hex file from "my first project”...

"my_first_project”™ - 0 Error(s), 0 Warningi(s). -
Kl ¥
Rebuild all target files [|InRFProbe ke

Figure 22. Example code with build of HEX file (shortcut F7)

10. After compiling the code you can program the nRF24LE1 module plugged into the nRFgo
Motherboard by selecting Download. See encircled area in Figure 23. on page 20.

11. If you want to run the application without the debugger you need to deselect “Enable Debugger”
(see Figure 16. on page 15).

12. The first time you attempt to program an nRFgo module you will be prompted about which nRFgo
Motherboard you want to use. See Figure 24. on page 20. Make sure that an nRFgo
Motherboard and an nRF24LE1 module are plugged into the computer.

Revision v1.1 Page 19 of 37

o R D Application Note nAN-15

[E]nw_first _project - p¥isiond 1ol x|
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help
A IR ® E) "R Qe
i X ?Q Iy first projsct L
: [F1_main v X

-4 My fiest project i Download lc&ti on *F :I

E“E Application ownload code to flash memory =

i i 03 /) Register file for the nRFZ4LEL

reg24lel.h 04 #include <Nordichregzdlel.hs

{:I HaL 05
06 // Main routine

07 woid maini)

0g 1

09 A4 Set PO oa2s output
10 POLIER = 0O=00;

11 while (1)

12 i
13 A Toggle & GPIO
14 POO = 'POO;
15 i
1| |+ 16 1}

Elr. |€FE.| {3 E.| 0,7,

compiling main.c...
linking...

Program Size: data=9.0 xdata=0 code=:Z2
creating hex file from "my first project™...
"my_first project”™ - 0 Error(s), 0 Warning(s).

Kl

Download code to flash memary |

Figure 23. Programming the nRFLE1 module from Keil

ol

ML

||nF{FProbe Ke|

13. The board you use depends on the number of boards connected to the computer. You can have
several projects open at the same time and program boards individually. Boards can be
programmed from their own project. Each nRFgo Motherboard has a small status LED that
indicates the board number.

select nRFgo Motherboard =l

Please make your selections below, If vou have more than one
nR.Fgo board connected please seleck the appropriate board in
the drop dawn lisk.

Iﬁ ¢~ Use the selected board For this debug
Board2 ¥ session only

o Always use the selected board For
this project

= Ack me every time

e —

Figure 24. Selecting which nRFgo board to use for your project

Revision v1.1 Page 20 of 37

N o R D Creating Applications with the Keil C51 C Compiler

> SEMICONDUCTOR

You have now successfully compiled and programmed your first application, and the next step outlined in
section 3.3 will help you include files to make more complex applications.

3.3 Step 3: Including files

Writing source code from scratch can be time consuming, since you will have to study in detail all the
registers in the datasheet to set up the device. To shorten development time there are ready-made
software modules that can be included and re-used for several projects. Each module contains the
functionality for a specific hardware module.

For this project you want to use the ADC within the nRF24LE1, so you will include the HAL for the ADC.

1. Select the HAL folder in the Project tree view and activate the context menu by right-clicking.
Select Add Files to Group ‘HAL'... from the context menu. See Figure 25.
[Fmy_first_project - p¥isiond i] |
File Edit View Project Flash Debug Peripherals Tools 35VCS Window Help
ER=2= N BN ' == |] o 5 | @)
HE =01 %5 | My first project L
oo x | — 7
Eﬁ My first project 01 7% My first application */ j
ES Application 02
B[] mai 03 // Register file for the nRFZ4LEL
04 #Hinclude <Nordic\regZ4lel.hs
..... = dfé Options for Group "HAL'... Alt=F7 be
Open File
Open List File output
COpen Map File ;

Rebuild all target files

Build target m |¢ PO

Translate File

4| Stop build

o

= ey

&
z
ol

| Add Files to Group "HAL"...

nRFPro
Copyrig
Era=sing
Flash W
Flash V Show Include File Dependencies
4| !

Add Files to current Project Group |

Figure 25. Including the HAL for the ADC

ﬁ Manage Components...

"l

||nRFProbe K(| y

Revision v1.1 Page 21 of 37

SNINORDIC

SEMICONDUCTOR

2. The HAL can easily be included by right-clicking on the HAL folder in the Project tree view and
then selecting “Add the hal_adc.c to the project” as shown in Figure 25. on page 21. See Figure
26.

Add Files to Group "HAL" 21 x|

/%E@rfzmm <] « & o B
\l@ J
=[hal_aes.c

IE] hal_ancmp.c
=] hal_clk.c

%] hal_flash.c
[Z] hal_ref_fw.c
I‘% hal_pof.c
[Z] hal_rng.c
I‘% hal_rtc.c

IE] hal_spi.c

I‘E hal_uart.c
I‘% hal_wz.c

[Z] hal_wdaog.c

File name: |hal_ade.c Add

Files of type: [C Source file [*.c) =l ﬂl

4

Figure 26. Browse to \Source code\hal\nrf24le1 and include hal_adc.c

3. The HAL for the ADC is now included in the project, and to use the functionality of the HAL you
can include it in the main.c by writing #include <hal_adc.h>. See encircled area in Figure 26.

Revision v1.1 Page 22 of 37

N o R D Creating Applications with the Keil C51 C Compiler

[E]my_ﬁrst_project - p¥isiond - 10l x|
File Edit View Project Flash Debug Peripherals Tools 5SVCS Window Help
NSHe | % Bn9 P "] R Qe
s 2 B9 | My first project S
l:] main.c l - X
- Rebuild all target files | /% My first application */ j
Ea T 0}
- B[] main.c 03 #include <NordiciregZ4lel.h>
N 2] reg24lel b 04 #includg<hal ade.h>
[= hal_adc.h o5
= |zs] stint. b 0B // Main routine
stdbool.h 07 void main()
- og {
- [#] hal_adc.c 03 |
- : 03
----- stdboal.h
----- 2] regzdlel.h
- nordic_cori
----- 2] hal_adc.h
4] I © =
@e. (e[O rJ0,1.] [14] | ’
Program Size: dats=%.0 xdata=0 code=191 ;I
creating hex file from "my first project”...
"wy_first_project” - 0 Error(s), 0O Warning(s).
-
K| »
Rebuild all target files [|[nRFProbe ke .

Figure 27. Rebuilding target

4. After including the file in the project you can Rebuild the application. See Figure 27. You can use
a project with an empty main routine. The compiled code space is now 191 bytes, the reason for
this is that you have included all the functionality of the ADC to your project, but not used it yet. If
you are using the extended linker, then unused functions are not compiled and there is no
increase in code size.

Revision v1.1 Page 23 of 37

o R D Application Note nAN-15

[E]my_ﬁrst_project - p¥isiond g i [m] 4
File Edit View Project Flash Debug Peripherals Tools 5SVCS Window Help

e | %G9 == | B¢ Qe
HE A AN B | My first project L =
| mainc” [£] hal adc.c [[] HALADGH, | v %
2 [hal_ade.c 018 | #include <stdint.hs j
----- % hal_adc_busy (void) 019 | #include <stdbool.h>
----- & hal_adc_get_overflow_stat 020
----- % hal_adc_read_LSE (vaid) 021 | #include <MordichregZd4lel.hs
----- % hal_adc_read_M3E (void) 022 | #include "nordic cowmon. h”
----- § hal_adc_set_acq_window (b} | (023 | #include "hal adc.h”
----- & hal_adc_set_conversion_mc 024 -
----- @ hal_adc_set_data_just ihal 075 -
""" % hal_adc_set_input_channel =026 void hal ade set_input channel (SEUREC iVt g chse !
""" % hal_adc_set_input_mods (h. 027[H{ s/ Update "chsel™ bits Insert ‘#include <reg24lel.h>"
""" @ hal_adc_set_power_down_t 028 ADCCON1 = ((ADCCON1 & OxC3) |
""" @ hal_adc_set_reference (hal| 029 | 3 & Insert/Remove Breakpoint
----- & hal_adc_set_resaclution (hal, 030 . .
. Enable/Disable Breakpoint C
----- @ hal_adc_set_sampling_rate 03 -
----- & hal_adc_start {void) 032 void hal ade_set_reference (ha Go To Definition OF ‘hal_ad c_.mput_;;y
[]"' main. ¢ 0331 /7 Update "refsel™ bits -
034 ADCCON1 = ({(ADCCON1 & OxFC) | TPt _channe
035 | ¥
'{-‘-‘ Insert/Remove Bookmark C
036
037 =)]) Undo !
038 woid hal ade_set_input_wode (hal
03914/ Update "diffm" bits Redo
040 ADCCONZ = [(ADCCOMNZ & Ox3F) | ¥
Cut !
041 | ¥ 8
4 I,.---"—-----..I »
I u (42 53 Copy ¢
EPr... |@Bou {} Fu.. B’..Te... | |<| |
—— | Paste
Program Zize: data=10.0 xdata=0 code=235 Select All :
creating hex file from "my_first_project”... Sutlinin
"y first project”™ - 0 Error(s), 0 Warning(s). o
Advanced
<] jual

| ||nRFProbe K(l Y

Figure 28. Available functionality of the HAL ADC with source code

5. Optionally you can browse the functions in the hal_adc.c by selecting the “Function tab”. See the
encircled area to the left in Figure 28. Click on one of the functions to see the argument for the
functions and the source code for it. All parameters for the functions are enumerators that can be
used in the function call.

6. You can also list up all available enumerators by using the Go To Definition of menu option (see
Figure 28.) for each function call (see Figure 29. on page 25).

Revision v1.1 Page 24 of 37

N o R D Creating Applications with the Keil C51 C Compiler

[E]my_first_proiect - p¥isiond] i =] B
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

EHS | %289 4= = | EEE R B B¢ Qe
2 L %Q My first project hd ,;2% h
| main.c r nai_adc.c/y HAL_ADC.H] - x
Bl] hal_ade.c Al|[107 HAL ADC INP ATNS = HAL INP_LINA, =
----- % hal_adc_busy {void) 108 HAL ADC INP_AINS = HAL INP_AING,
----- % hal_adc_get_overflow_s 109 HAL_ADC_INP_AINIO0 = HAL INP_AIN1O,
----- @ hal_adc_read_LSE {void) 110 HAL_ADC INP_AINii = HAL INP_ATNii,
----- % hal_adc_read_MSE (void 111 HAL ADC INP_AIN1Z = HAL INP_AINiZ, =
----- % hal_adc_set_acq_window ||| 112 HAL_ADC_INP_AIN13 = HAL INP_AIN13,
----- % hal_adc_set_conversion_ 113 HAL_ADC_ INP_VDD1 3 = HAL INP_VDDi_3,
----- & hal_adc_set_data_just (| 114 HAL_J = HAL INP VDDZ 3
----- % hal_adc_set_input_chani =Skl @l =] adc input channel tp
----- @ hal_adc_set_input_mode 116
| | ' 3 17 | 7#* An enum describing the ADC's reference. =
= 110 *
Eer. [GFeo. | v [Oy1e. | |40 _>|_I
Program Size: data=10.0 xdats=0 code=233 d
creating hex file from "my first project”...
"oy _first project" - 0 Error(s), 0 Warning(s).
-
Kl z
| ||nRFProbeK(| i

Figure 29. Available parameters used as input for specific function

7. By using the functions listed in the hal_adc.c you can easily build an application that can initialize
and read an analog input, and there is no need to study the datasheet in detail. Similar HAL are
available for all modules inside the nRF24LE1.

Revision v1.1 Page 25 of 37

D I c Application Note nAN-15

} SEMICONDUCTOR

8. For now you can copy the content from Figure 30. (Code example 2) below into your the main.c.

/* My second application */

finclude <Nordic\reg24lel.h>
#include <hal adc.h>

void main()

{

// Init a variable for the ADC measurement
uint8 t adc measurement = 0;

// Configure ADC

hal adc set input channel (HAL ADC INP AINO);

hal adc_set reference (HAL ADC REF VDD);

hal adc set input mode (HAL ADC SINGLE);

hal adc set conversion mode (HAL ADC SINGLE STEP):;
hal adc set resolution (HAL ADC RES G8BIT);

hal adc set data just (HAL ADC JUST RIGHT) ;

while (1)
{
hal adc start(); // Start the ADC
while(hal adc busy()) // Wait for the ADC to finish a
conversion
adc_measurement = hal adc read LSB(); // Read the ADC result

}

Figure 30. Code example 2

Revision v1.1 Page 26 of 37

N o R D Creating Applications with the Keil C51 C Compiler

[E]my_ﬁrst_project - p¥isiond i =] 5]
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
IEHE | b BRBR[(T == E = E e |3 R R e

@ first project - gﬁ ﬁ
J Rebuild main.c |.[#] haladee, [[HALADCH. | v x
13 My fi Rebuild all target files | 03[]#include <MordichiregZ4lel.h> zl
-5 AppICETIn 04 | #include <hal ade.h>
[£] main.c 05
----- regzdlel.h 06 void maini)
----- hal_adc.h o7l ¢

stdint.hy 08 A4 Init a variable for the ADC measurement
""" stdbool.h 03 uintd_t ade_measurement = 0;
3 HAL 10
= [#] hal_adc.c 0| A4 Configure ADC

stink.h 12 hal adc_set_input channel (HAL ADC_INP_AINO) ;

- |1z stdboal.h 13 hal_sde_set_reference (HAL_ADC_REF_VDD) :

- |a] regzdlel.h 14 hal_sdc_set_input_mode (HAL_ADC SINGLE) ;
nordic_comman.b 15 hal adc_set conversion mode (HAL ADC SINGLE STEP) :

""" hal_adc.h 16 hal adc set resolution(HAL ADC RES SEIT):
17| hal ade set data just (HAL ADC_JUST RIGHT) :
18
19 while (1)
20 {
21 hal ade_start(): /7 Start the ADC
22 while(hal adc busy() | /) Wait for the ADC to fipisk 3 .
23 H
24 ade_measurement = hal ade read L3B(): // Read the ADC re:
25 ¥
26—}

Elpr... |@Bo... | {}Fu.. |[],Te... | [4] | _I_

=
3
Program Size: dats=10.0 xdats=0 code=Z35 ;I
creating hex file from "my_first project’...
"wy_first project” - 0 Error(s), 0 Warning(s).
-
¥

Kl

Rebuild all target files [|[nRFProbe ke -

Figure 31. Creating an application that measures an analog input by using the HAL

9. After pasting the code into main.c, as shown in Figure 31.,use the Rebuild function to rebuild the
target and verify that it builds successfully.

10. You have now successfully included and used the first HAL module. The HAL provides an easy
way to start using a specific functionality such as the ADC. Your next step will be to start
debugging the project.

Revision v1.1 Page 27 of 37

o RD c Application Note nAN-15

3.4 Ste

An important feature of the Keil compiler is the possibility it gives to debug the application by using the
nRFprobe debugger.

N
: Debug your project

©
DO

1. To start the debug session select the Start Debug Session button. See encircled area in Figure
32. on page 28.

[E]my_first_proiect - p¥isiond - 18] x|
File Edit Wiew Project Flash Debug Peripherals Tools SVCS Window Help
A=A 1 JEREY . = YA e (]
HE< 2N ¥ P9 | My first project - A A @—Staﬂ
| main.c [[#] haladec, [[] HALADCH. | =]
Eﬁ My First project 12 hal_sdc_set_input_channel (HAL_ADC_INP_AINO): j-"
=23 Application 13 hal adec set reference (HAL ADC_REF_VDD);
Elm mair.c 14 hal_adc_set_input_mwode (HAL_ ADC_SINGLE) ;
H regz4lel b 15 hal_sdc_set_conversion mode (HAL ADC SINGLE_STEF);
----- hal_adc.h 16 hal adc set resolution{HAL ADC RES SEIT);
""" stdint.h 17 hal ade set data just (HAL ADC_JUST RIGHT):
N, stdbool.h 18
B3 HAL 19 while (1}
- [#] hal_ade.c 30 ¢
""" stdint.h 21 hal_ade_starti); /S Starct the ADC
----- stdboal.h 22 while (| hal_ade _busy() | // Wait for the ADC to finish 2
----- regz4lel.h 23 B
----- nardic_comman.h 24 ade_measurement = hal ade read L3E(): // Eead the ADC re:
----- hal_adc.h 25 B
26 =
EPr... |@Bo...| {}Fu. |[].'Te... | |<| |
compiling main.c. .. ;I
cowpiling hal ade.c... —
linking. ..
Program 3Jize: data=10.0 xdata=0 code=233 | hd
L] »
Enter or leave a debug session | ||r1RFProbe Ke| y

Figure 32. Start debug session (shortcut Ctrl + F5)

2. In debug mode you have access to the disassembly window, SFR registers and all variables in
the project. You can run code in real time, set breakpoints, single step or run to cursor.

3. To simplify the project window, you can exit the dissassembly window for the purposes of this
application note. (See the encircled area in Figure 33. on page 29 for how to exit the window. You
can open it again later from the View menu at the top.) Also select the “Project” tab which is
shown on Figure 33. on page 29 to see all project files.

Revision v1.1 Page 28 of 37

| :my_firstJJroject - p¥ision4
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEHS| & BB - ™

=10l=|

) - 5o [@]

g B eneo ol [DEEERE] - - s | B

X
Fiegister [Value || |52 0x0000 020001 LJIMP C:00D1 3
6: wvoid mwaini)
0400 7
w00 =8 ff Init a wvarisble for the ADC measurement
w00 9: uintd_t adc_measurement = 0;
. -
000 10: LI—I
0x00
000 main.c r hal_adc.c r HAL_ADC.H vx
g”gg hal_ade_set_input_channel (HAL ADC INP_ATINO) : -
§ hal ade_set_reference (HAL_ ADC REF VDD ;
_______ s00 hal_adc_set_input_mode (HAL_ADC_SINGLE) ;
_______ E D“DD hal_ade_set conversion mode (HAL ADC SINGLE STEP) ;
H hal_adc_set,_resolut,ion(HAL_ADC_RES_SBIT] H
oy 00000 hal adc set dats just (HAL ADC JUST RIGHT) :
-~ dptr " _ _ _ _ _ _ —
"""" FC ¢ 0x0000 . b
hile (1
B psw 400 i et
hal ade =start i) A SFanr Fha AT i
D Project Reqgisters b
nREFProbe Hardware Debugger for KEeil uWision \;I Calles Caller |

Copyright (C) 2008 Mordic Semiconductor
Load "C:y3MNordic Semiconductor’y\nRFgo 3IDE w2,

=
| | »

>

AN ASSIGN BreakDisable EBreakEnsble BreakKill | L;-‘l]CaII Stack |"@Locals |"'T,-EWatch1.|

Jdemory 1 |_IES}'mboIs |

||nRFProbe Kel i

Figure 33. Default debug window

Revision v1.1 Page 29 of 37

o RD Application Note nAN-15

File Edit Miew Project Flash Debug Peripherals Tools 3VCS Window Help

i NEdd | £ i I Il | &% > o
FES (BT eul - M- El-@- |- 5
i - X
=-§3 My first praject 1| /7 Configure ADC ZI
=] Application 12 hal_sdc_set_input channel (HAL ADC INP AINO);
] mai 13 hal ade set reference (HAL ADC REF_WVDD)

14 hal ade set input mode (HAL ADC SINGLE);

15 hal ade set conversion mods (HAL ADC SINGLE STEP) :

16 hal ade set resolution(HAL ADC RES SEBIT):

17 hal ade set data just (HAL ADC JUST RIGHT) :

ik

19 while(l)

20 i

21 hal ade_start(]: /7 Start the ADC

22 while | hal ade busy() |/ Wait for the ADC to finish a conv

23 B

24 ade messurement = hal ade read LI3E(); /7 Read the ADC result

25 F

26 - -
E Project | = Registers | 4 | | 3
Copyright (C) 2008 Nordic Semiconductor d Mame Yalue
Load "C:4i\Nordic Sewiconductorh\nRFgo SDE w2

-

< | »

=

ASM ASSIGN BreakDisable BreakEnable BreakKill | &y Call Stack |g§§|Loca|s |@Watch1| emory1|

| ||r1RFProbe Ke| y

Figure 34. Simple debug window (disassembly closed)

Revision v1.1 Page 30 of 37

File Edit Wiew Project Flash Debug Peripherals Tools 5SWCS5 Window Help
NEdd| s a9 ™ E JE Nz | B ®
B aron @ DR BE Z-8- - @ A
hal_adc.c HAL_ADCH] -
B3 My first project /7 Configuee ADC ZI
EHE3 Application (Mi12D hal ade sec_inpuc_channel (HAL_ADC INF_AINO) :
#] main.c iE] hal ade set reference (HAL ADC_REF_VDD); S ¢ 2 S PR L
B3 H 14 hal_ade_set_input_mode (HAL_ADC_SINGLE) ; .
[#] hal_adc.c 15| hal adc_set_conversion mode (HAL ADC_SINGLE | °nOW Disassemblyat COx00(
16 hal ade set_resclution (HAL ADC RES SEIT): Set Program Counter
17 hal ade set data just (HAL ADC JUST RIGHT) ; *{} Runto Cursorline
18
13 while (1) (@ Insert/Remove Ilreatpoj
W LWJ
21 hal_ade_startil: // Start the ADC p [Ee s
: while{ hal ade busy()) // Wait for the A oo 1o pofintion of
23 H !
24 ade_measurement = hal adc read L3B():; /7 Go To Reference To
B '
26 Ly Add g to..
g j |§ i [l
i Frojedt meers J_I_I 'EG Insert/Remove Bookmark
. . . ¥} Undo
Copyright (C) 2008 Nordic Semiconductor ﬂ Mame
Load "C:\WNordic Sewiconductorh'nBFgo 3DE vZ Redo
-
1| | ¥ Cut

=

ASM ASSIGMN BreakDisakle BreakEnable BreakKill |

Insert or remove a breakpoint at the current line

53 Copy

d-hy| Paste

& Call Stack |gs'ELoca|s |,&'§<‘jWatch 1
|

Figure 35. Set breakpoints (shortcut F9)

Figure 35. or right-click and select Insert/Remove breakpoint.

i EG | & n
Figure 36. Debug toolbar

Calark ANl

You can set breakpoints in the application by double-clicking on a code line, as illustrated in

The debug toolbar can be used to reset or run the code. You can also run to line, single step or

step into code during debugging. For each step you can read out variables and register values.
Move cursor over the buttons to acquaint yourself with the purpose of the debug buttons.

application will then run

Select the Run Application function button to run the code. See Figure 36. on page 31. The

until it encounters a breakpoint or stops.

Revision v1.1

Page 31 of 37

o R D Application Note nAN-15

[my_first_project - pvision4 oy [P
File Edit View Project Flash Debug Peripherals Tools 5VCS Window Help

;)2 | G =i A i | 5] @]
(EPR (v oo ol O BERE

main.c l X
Eﬁ My First project 06 woid waini) j
=5 Application o7l
main.c A7 Init 2@ variable for the ADC measurement
=5 HAL uintd t adc messurement = 0;

hal_ade.c
A4 Configure ADC

hal ade set_input channel (HAL ADC INP_ATINO) :

hal adc_set reference (HAL ADC REF_VID);

hal ade_set_input_mode (HAL ADC 3INGLE) ;

hal ade set_conversion wode (HAL ADC STNGLE STEP) ;
hal adc_set _resolution(HAL ADC RES SEIT):

hal adec_set_data just (HAL_ADC JUST RIGHT):

while (1)
i
hal ade start(); /) Start the ADC

R ROt b SR ey
L3P — D000) 0 U L) P =D D00

while(hal ade busy() | // Wait for the ADC to finish a
L ade measurement = hal ade read L3E(): /) Read the ADC re
(8=) ¢
e i
EE] Project | £ Registers | KN e _’I_

ra
nEFFProbe Hardware Debugger for Keil uVision \;I EName %Value }

Copyright (C) 2008 Nordic 3emiconductor - ade_measurement ||:|H12
Load "C:%v‘\Nordic Semwiconductory'\nRFgo SDE w2,

=
. | 3

-
ASM ASSIGN EreakDisable BreakEnshle EBreakKill | r,,'-‘llCaIIStack |{7§ﬂLocals |£§Watchl

Memory 1 |

||nRFProbe Ke|]

Figure 37. Running to breakpoint and reading out local variables

7. Each time the program stops, a yellow arrow (see encircled area around yellow arrow in Figure
37.) where the program currently is running, and local variables are read out in the “Locals”
window to the bottom right of the Keil window.

Revision v1.1 Page 32 of 37

N o R D Creating Applications with the Keil C51 C Compiler

> SEMICONDUCTOR
8.

In this example you can step through the loop and see the ADC measurement changes as you
change the input, for instance place a finger on the analog input 0 to change reading.

[E]my_ﬁrst_proiect - p¥isiond -0l x|
File Edit Wiew Project Flash | Debug | Peripherals Tools SVCS Window Help
NS EE| % EBE| 9 Start/Stop Debug Session cti=F5 || G - [B]e °
(R0 EL @ | & T O 88 Resetcru - @ f-
Run Fs v X
=54 My first project
B L | stop &
Ea Application _-l
£} Step FIl e ADC measurement
: T Step Over Flo = O:
hal_adc.c
{'}| Step Out Ctrl=F11
4} Runto Cursor Line Ctrl=F10 |1 {HAL ADC INP AINO) :
5 Show Next Statement L_ADC_REF_WDD] ;
UL ADC_SINGLE) ;
Breakpoints... Ctrl=g |ode (HAL ADC_SINGLE STEP) ;
AL ADC RE3 SEBIT):
@ Insert/Remove Breakpoint Fa L_EDC_EUST:RIGHEF]:
2 Enable/Disable Breakpoint Ctrl+F9
¢ Disable All Breakpoints
ﬁ Kill All Breakpoints Ctrl+Skift=F9 ort the ADC
05 Support ’J A4 Wait for the ADC to finish a

-

Execution Profiling adc_read L3EB(): / Read the ADC re

Memory Map...

EProject == Registers Inline Assembly... v

Function Editar (Open Ini File]...

nEFProbe Hardware Debugge

oW | value
Copyright (C) 2005 Nordic J—" % El
Load "C:%\Nordic Semicon L(244 S D ﬁj !
\‘NT":_' RuctianRagist —

Analog Comparator

Encryption/decryption

Interrups
1] |
PWM
=
Memary 1 |

Real Time Clock

Random Mumber Generator = =
ASM ASSIGN BreakDissble B flLocals |,;§«-JWatchL |

||r|RFProbe Kel y

COT KAactar

Figure 38. Debugging the A/D converter hardware module directly

9. You can also view the hardware module embedded in the nRF24LE1. See encircled area in
Figure 38. for the relevant menu selection.

10. If you want to change configurations directly during run time without re-compiling, this can save
time during prototype development to test different configurations.

Analog/Digital Converter #
ADCCON] —— ——— pADCCONZ —— —— raDCCONs ——— (———
v Power Lip IDXSI I™ continuous cony. Im [v Right justified .
™| Conversionin Progress Select mode:

Input Channel Select: I Single Ended j

| Ao = || Rate: [ous -]

Reference Seleck: Bcquisition window:

I'v'DD j D?’S = j ™| averflow = Wnderfliav
I ' I~ Underfiow ar cverflam

ADCDATH: IDXDD ADCATL: IDxll

Figure 39. Screenshot showing how to modify the A/D converter configuration during debugging

You can now debug your own project and you have completed the tutorial. For more example projects
make sure to view the projects included in the nRFgo SDK.

Revision v1.1 Page 33 of 37

S o R D Application Note nAN-15

SEMICONDUCTOR

4 Conclusions

The nRFgo SDK with the Keil compiler provides an easy-to-use environment for programming and
developing nRF devices. The nRFgo SDK contains the HAL, libraries and an RF protocol that can be used
as-is or as a reference when writing your own applications.

Some of the advantages of using the nRFgo SDK are:

* Ready made software modules that can be re-used for several projects
* Proven and tested code

» Simple functions that are easy to use

* Shorter development time

* Flexible development environment

Revision v1.1 Page 34 of 37

N N o R D Creating Applications with the Keil C51 C Compiler

SEMICONDUCTOR

Appendix A - References

Useful reference projects and documentation during development include:

* Documentation for nRFgo SDK

* nRFgo SDK example projects

* Documentation for nRFgo Starter Kit
* Documentation for nRFprobe

Revision v1.1 Page 35 of 37

N N O R D Creating Applications with the Keil C51 C Compiler

SEMICONDUCTOR

Appendix B - Troubleshooting
The debugging is not working. What has happened?

» If nRFgo Studio is running at the time you are debugging, then debugging will not work.

| am not able to flash the nRF24LE1. What has happened?

« If the jumper on P7 on the Motherboard is missing you will not be able to flash the nRF24LE1.
The UART functionality is not working. What has happened?

» The GPIOs used during debugging cannot be used for other purposes during debugging, so any
functionality such as UART will not work if the same pins are used for debugging.

The debugger is not working. What has happened?

» The debugger must be set up correctly to work, so make sure that the nRFprobe driver is selected
for both Debug and Utilities in the ‘Options for Target’ menu in Keil. Also make sure to program the
nRF24LE1 before debugging.

How can | run the code without a debugger?
* Make sure to disable the debug bit if you want to run the code without debugger, and vice versa.
Note: The debug bit is set if the project file is moved.
Nothing seems to work. What has happened?

» Check the supply voltage (in nRFgo Studio) for the board if nothing seems to work.

* Make sure that you have the latest development software from http://www.nordicsemi.com/update/
index.php

* Run nRFgo Studio and make sure that the Motherboard is using the latest firmware. You will be
prompted to update the firmware if it is outdated.

I am having difficulty debugging in power-down mode. What has happened?

* |tis not possible to debug in power down.

I am having difficulty using my GPIO as ADC. What has happened?

* A GPIO cannot be used as ADC fif it's already used as UART, SPI, 12C, or something similar.

The error message "Error: Flash Download failed - C:\path\to\keil\BIN\nrfkeil515d.dll" appeared
while | was trying to download the program to the Motherboard. What has happened?

If you encounter "Error: Flash Download failed - C:\path\to\keil\BIN\nrfkeil515d.dIl" while trying to download
your program to the Motherboard, please check your compiler settings. From the menu, select Project,
Options for project, then verify that the "nRFProbe Keil Driver" is selected from the “Utilities” and
“Debug” tab.

Revision v1.1 Page 36 of 37

N N 0 R D Creating Applications with the Keil C51 C Compiler

SEMICONDUCTOR

Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to

improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Life support applications
These products are not designed for use in life support appliances, devices, or systems where malfunction
of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA

customers using or selling these products for use in such applications do so at their own risk and agree to
fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale.

Contact details

For your nearest dealer, please see http://www.nordicsemi.com.

Receive available updates automatically by subscribing to eNews from our homepage or check our
website regularly for any available updates.

Main office:

Otto Nielsens veg 12
7004 Trondheim
Phone: +47 72 89 89 00
Fax: +47 72 89 89 89
www.nordicsemi.com

DIN'V =t
No. S03

NS-ENI1SO 9001 CERTIFICATED4IRM

Revision History

Date Version Description
June 2011 1.1 Updated application note to
reflect upgrade to SDK v. 2.2 and
to reflect new convention for
application note codes.

August 2010 1.0

Revision v1.1 Page 37 of 37

http://www.nordicsemi.no

	1 Introduction
	2 Theory of operation
	2.1 Prerequisites to the tutorial
	2.2 Organizing the nRFgo SDK

	3 Developing with nRFgo SDK
	3.1 Step 1: Set up your first Keil project
	3.2 Step 2: Your first application
	3.3 Step 3: Including files
	3.4 Step 4: Debug your project

	4 Conclusions
	Appendix A - References
	Appendix B - Troubleshooting

